A new mirror stereoscopic display for Direct Volume Rendering (DVR) is presented. The stereoscopic display system is composed of one monitor and one acrylic first surface mirror. The mirror reflects one image for one of the eyes. The geometrical transformations to compute correctly the stereo pair is presented and is the core of this paper. System considerations such as mirror placement and implications are also discussed. In contrast to other similar solutions, we do not use two monitors, but just one. Consequently one of the images needs to be skewed. Advantages of the system include absence of ghosting and of flickering. We also developed the rendering engine for DVR of volumetric datasets mostly for medical imaging visualization. The skewing process in this case is integrated into the ray casting of DVR. Using geometrical transformations, we can compute precisely the directions of the rays, producing accurate stereo pairs.
[Bar03] BARCO: Stereoscopic projection: 3d projection technology.
http://www.barco.com/projection\_systems/downloads/barco\_stereoscopic\_proj.pdf, 2003. 1
[Ber96] BERTHIER A.: Images stéréoscopiques de grand format
(in French). Cosmos 34, 590 and 591 (May 1896), 205–210 and
227–233. 1
[BES00] BIMBER O., ENCARNAÇÃO L. M., SCHMALSTIEG D.:
Augmented reality with back-projection systems using transflective
surfaces. Computer Graphics Forum (Proceedings of EUROGRAPHICS
2000) 19, 3 (2000), 161–168. 3
[BFSE01] BIMBER O., FRÖHLICH B., SCHMALSTIEG D., ENCARNAÇÃO
L. M.: The virtual showcase. IEEE Computer
Graphics and Applications 21, 6 (2001), 48–55. 3
[Boh] BOHÁČ M.: Dual monitor setup for stereoscopic viewing.
http://klub.stereofotograf.eu/dual\_monitor.php. 2, 8
[Bou99] BOURKE P.: Calculating stereo pairs. http://paulbourke.net/miscellaneous/stereographics/stereorender/, 1999. 7
[CV95] CUTTING J. E., VISHTON P. M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual
use of different information about depth. "W. Epstein and S.
Rogers (eds.), Handbook of perception and cognition", 1995. 1,
7
[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume
rendering. SIGGRAPH Computer Graphics 22, 4 (1988),
65–74. 3
[Dod04] DODGSON N. A.: Variation and extrema of human interpupillary
distance. In Proc. of SPIE: Stereoscopic Displays and
Virtual Reality Systems XI (2004), vol. 5291, pp. 36–46. 2
[FRM*05] FERGASON J., ROBINSON S., MCLAUGHLIN C.,
BROWN B., ABILEAH A., BAKER T., GREEN P.: An innovative
beamsplitter-based stereoscopic/3d display design. SPIE Stereoscopic
Displays and Virtual Reality Systems 5664 (May 2005),
488–494. 2
[GCC*89] GORDON C. C., CLAUSER B. B. C. E., CHURCHILL T., MCCONVILLE J. T., TEBBETTS I., WALKER R. A.:
1987-1988 anthropometric survey of u.s. army personnel: Methods and summary statistics. tr-89-044. natick ma: U.s. army
natick research, development and engineering center., 1989. 2
[Gra68] GRAND Y. L.: Light, Color and Vision, second ed. London:
Chapman and Hall, 1968. 7
[Hea81] HEATH S. T. L.: A history of Greek mathematics. Volume
II:From Aristarchus to Diophantus. Oxford: At The Clarendon
Press., 1981. 2
[Hen93] HENSON D.: Visual Fields. Oxford: Oxford University
Press, 1993. 4
[HHM98] HUBBOLD R., HANCOCK D., MOORE C.: Stereoscopic
volume rendering. Proc. Visualization in Scientific Computing
’98 6, 3 (1998), 105–115. 7
[Hol05] HOLLIMAN N.: 3d display systems. http://www.dur.
ac.uk/n.s.holliman/Presentations/3dv3-0.pdf, 2005. 1
[HWSB99] HUBONA G., WHEELER P., SHIRAH G., BRANDT M.: The relative contributions of stereo, lighting and background scenes in promoting 3d depth visualization. ACM Transaction on
Computer-Human Interaction 6, 3 (1999), 214–242. 7
[Ive02] IVES F. E.: A novel stereogram. Journal of the Franklin
Institute 153 (1902), 51–52. 1
[JF03] JORKE H., FRITZ M.: Infitec-A new stereoscopic visualization
tool by wavelength multiplexing imaging. In Proc.
Electronic Displays (2003). 1
[KH07] KONRAD J., HALLE M.: 3-d displays and signal processing.
IEEE Signal Processing Mag. 24, 7 (May 2007), 97–111. 1,
2
[KSTE06] KERSTEN M., STEWART J., TROJE N., ELLIS R.: Enhancing
depth perception in translucent volumes. IEEE Transactions
on Visualization and Computer Graphics 12, 5 (2006),
1117–1124. 7
[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE
Computer Graphics and Applications 8, 3 (May 1988), 29–37. 3
[MM05] MARREIROS F. M. M., MARCOS A.: Calculating the
stereo pairs of a mirror-based augmented reality system. 13o Encontro
Português de Computação Gráfica (2005). 7
[MS13] MARREIROS F. M. M., SMEDBY Ö.: Stereoscopic static
depth perception of enclosed 3d objects. In SAP ’13 Proceedings
of the ACM Symposium on Applied Perception (2013), pp. 15–22.
7
[Nvi12] NVIDIA: 3D Vision. http://www.nvidia.com/object/3d-vision-main.html, 2012. 1
[OO90] OWCZARCZYK J., OWCZARCZYK B.: Evaluation of true
3d display systems for visualizing medical volume data. The Visual
Computer 6, 4 (1990), 219–226. 7
[Pla] PLANAR3D: 3D Technologies. http://www.planar3d.
com/3d-technology/3d-technologies/. 2
[Sac04] SACKETT C.: Survey of optical systems: Phys 531,
lecture 11, university of virginia. http://galileo.phys.virginia.edu/classes/531.cas8m.fall04/l11.pdf, 2004.
7
[TSO*12] TOURANCHEAU S., SJÖSTRÖM M., OLSSON R., PERSSON A., RUDLING J., ERICSON T., NORÉN B.: Subjective
evaluation of user experience in interactive 3d visualization in a
medical context. Proc. SPIE 8318, 831814 (2012), 219–226. 7
[WC10] WU H.-H. P., CHANG S.-H.: Design of stereoscopic
viewing system based on a compact mirror and dual monitor.
SPIE Optical Engineering 027401 49, 2 (2010), 1–6. 2
[WT05] WICKENS C., THOMAS L.: Effects of CDTI display dimensionality
and conflict geometry on conflict resolution performance.
In Proceedings of the 13th International Symposium on
Aviation Psychology (2005). 7