Eric Halbach
Department of Electrical Engineering and Automation, Aalto University, Finland
Aarne Halme
Department of Electrical Engineering and Automation, Aalto University, Finland
Ville Kyrki
Department of Electrical Engineering and Automation, Aalto University, Finland
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp171421102Ingår i: Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016
Linköping Electronic Conference Proceedings 142:162, s. 1102-1108
Publicerad: 2018-12-19
ISBN: 978-91-7685-399-3
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
A kinematic earthmoving simulation environment was used to investigate job planning strategies which could increase the performance of automated material loading with a robotic compact skid-steered wheel loader. One new problem studied was the subdivision of a larger rectangular workspace using the smaller rectangular Scoop Area (SA). Two methods for selecting scooping approach vectors were also compared: a Zero Contour (ZC) method which assesses all possible perpendicular approaches along the bottom of the slope, and the proposed alternative High Point (HP) method which scoops towards the highest point in the current workspace from a ?xed point. Three jobs were simulated to determine which scooping method and SA dimensions resulted in the highest excavation rate in a truck loading scenario. Assuming the same scoop ?lling effectiveness, the HP method was found to offer a higher rate than the ZC method due to its more limited driving envelope. The maximum HP rates were achieved with SA dimensions which were narrower and longer than with the ZC method, while the optimal SA dimensions were also found to be dependent on the job parameters. When a higher amount of material to excavate per area was present, smaller SAs resulted in higher rates.
automation, robotics, earthmoving, excavation, wheel loader, simulation, job planning
Inga referenser tillgängliga