Cornelius E. Agu
Faculty of Technology, Telemark University College, Norway
Bernt Lie
Faculty of Technology, Telemark University College, Norway
Ladda ner artikelIngår i: Proceedings of the 55th Conference on Simulation and Modelling (SIMS 55), Modelling, Simulation and Optimization, 21-22 October 2014, Aalborg, Denmark
Linköping Electronic Conference Proceedings 108:21, s. 218-228
Publicerad: 2014-12-09
ISBN: 978-91-7519-376-2
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
Non-Newtonian fluid flow through a Venturi channel is studied using the Saint Venant equation. The nonlinear hyperbolic equation is numerically tricky to solve, therefore in this study, we consider the finite volume method with staggered grids which we find suitable for control applications. Both steady state and dynamic solutions of the fluids with different rheological properties are simulated and analyzed. The purpose of this study is to develop a numerical algorithm for estimation of flow rate of a non-Newtonian fluid in an open channel. Because a non-Newtonian fluid flow is often associated with supercritical flow upstream, the standard subcritical flume may not be suitable for estimating the flow rate. This study reveals that when a sufficient contraction is introduced in a channel, the supercritical flow jumps to subcritical flow level and then passes through the critical depth at the throat while accelerating towards the channel end. With this flow transition, the study shows that in steady states a unique relationship can be established between the flow rate and the free surface level at the gauging point. The dynamic solution also shows that the system responds positively for a step change in the flow rate, reaching the steady state solution within the simulation run time.
Venturi channel; Saint Venant equation; non-Newtonian fluid; Rheological properties; Finite volume method
Inga referenser tillgängliga