Konferensartikel

An Advanced Environment for Hybrid Modeling and Parameter Identification of Biological Systems

Sabrina Proß
University of Applied Sciences Bielefeld, Germany

Bernhard Bachmann
University of Applied Sciences Bielefeld, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11063557

Ingår i: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:63, s. 557-571

Visa mer +

Publicerad: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri nets; consisting of time-discrete as well as continuous Petri net elements; have proven to be ideal. This formalism was implemented based on the Modelica language. Several Petri net components are structured within an advanced Petri net library. A special sub library contains so-called wrappers for specific biological reac-tions to simplify the modeling procedure.

The Petri net models developed with the Dymola tool can be connected to Matlab Simulink to use all the Matlab power for parameter identification; sensitivity analysis and stochastic simulation.

This paper illustrates the usage of the Petri net library; the coupling to Matlab Simulink and further processing of the simulation results with algorithms in Matlab. In addition; the application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.

Nyckelord

Biological Systems; Petri nets; Parame-ter Identification

Referenser

[1] V.N. Reddy; M.L. Mavrovouniotis; M.N. Liebman (Eds.); Petri net representations in metabolic pathways: Proc Int Conf Intell Syst Mol Biol; 1993.

[2] C.A. Petri; Communication with automata; Rome Air Development Center; Research and Technology Division; 1966.

[3] R. Valk; Self-modifying nets; a natural extension of Petri nets; Automata; Languages and Programming (1978) 464–476.

[4] R. Hofestädt; S. Thelen; Quantitative modeling of biochemical networks; In Silico Biology 1 (1998) 39–53.

[5] F. Bause; P.S. Kritzinger; Stochastic Petri Nets; Vieweg; 2002. doi: 10.1007/978-3-322-86501-4.

[6] M. Heiner; D. Gilbert; R. Donaldson; Petri nets for systems and synthetic biology; Formal Methods for Computational Systems Biology (2008) 215–264.

[7] D. Gilbert; M. Heiner; From Petri nets to dif-ferential equations-an integrative approach for biochemical network analysis; Petri Nets and Other Models of Concurrency-ICATPN 2006 (2006) 181–200.

[8] A. Doi; S. Fujita; H. Matsuno; M. Nagasaki; S. Miyano; Constructing biological pathway mod-els with hybrid functional Petri nets; In Silico Biology 4 (2004) 271–291.

[9] P.J. Mosterman; M. Otter; H. Elmqvist; Modeling Petri nets as local constraint equations for hybrid systems using Modelica; Citeseer; Reno; Nevada; Proceedings of SCS Summer Simula-tion Conference; 1998; pp. 314–319.

[10] S.M. Fabricius; Extensions to the Petri Net Library in Modelica; ETH Zurich; Switzerland (2001).

[11] M. Otter; K.E. Årzén; I. Dressler (Eds.); State-Graph-a Modelica library for hierarchical state machines: 4th International Modelica Confer-ence; 2005.

[12] S. Proß; B. Bachmann; A Petri Net Library for Modeling Hybrid Systems in OpenModelica; Como; Italy; Modelica Conference proceed-ings; 2009.

[13] Modelica Association; Modelica - A Unified Object-Oriented Language for Physical Systems Modeling Language Specification Version 3.2 (2010).

[14] D. Gilbert; M. Heiner; S. Lehrack (Eds.); A unifying framework for modelling and analys-ing biochemical pathways using Petri nets: Proceedings of the 2007 international confer-ence on Computational methods in systems bi-ology; Springer-Verlag; 2007.

[15] S. Proß; B. Bachmann; R. Hofestädt; K. Niehaus; R. Ueckerdt; F.J. Vorhölter; P. Lutter; Modeling a Bacterium’s Life: A Petri-Net Library in Modelica; Como; Italy; Modelica Con-ference proceedings; 2009.

[16] Dynasim AB; Dymola-Dynamic Modeling Laboratory-User Manual Volume 2; Lund/Sweden; 2010.

[17] A. Saltelli; Sensitivity analysis in practice: a guide to assessing scientific models; John Wiley & Sons Inc; 2004.

[18] A. Saltelli; M. Ratto; T. Andres; Global sensitivity analysis: the primer; John Wiley & Sons Ltd; 2008.

[19] A. Saltelli; K. Chan; E.M. Scott; Sensitivity analysis; Wiley New York; 2000.

[20] R.I. Cukier; C.M. Fortuin; K.E. Shuler; A.G. Petschek; J.H. Schaibly; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory; The Journal of Chemical Physics 59 (1973) 3873–3876. doi: 10.1063/1.1680571.

[21] J.H. Schaibly; K.E. Shuler; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications; The Journal of Chemical Physics 59 (1973) 3879–3888. doi: 10.1063/1.1680572.

[22] R.I. Cukier; J.H. Schaibly; K.E. Shuler; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations; The Journal of Chemical Physics 63 (1975) 1140–1149. doi: 10.1063/1.431440.

[23] A. Saltelli; S. Tarantola; K.P. Chan; A quantita-tive model-independent method for global sen-sitivity analysis of model output; Technomet-rics 41 (1999) 39–56. doi: 10.1080/00401706.1999.10485594.

[24] R.I. Cukier; H.B. Levine; K.E. Shuler; Nonlinear sensitivity analysis of multiparameter model systems; Journal of Computational Physics 26 (1978) 1–42. doi: 10.1016/0021-9991(78)90097-9.

[25] M. Koda; G.J. Mcrae; J.H. Seinfeld; Automatic sensitivity analysis of kinetic mechanisms; Int. J. Chem. Kinet. 11 (1979) 427–444. doi: 10.1002/kin.550110408.

[26] J. Nocedal; S.J. Wright; Numerical optimization; Springer-Verlag New York Inc; New York; Berlin; Heidelberg; 1999. doi: 10.1007/b98874.

[27] T. Weise; Global Optimization Algorithms – Theory and Application; 2009. http://www.it-weise.de/.

[28] T. Bäck; Evolutionary algorithms in theory and practice: evolution strategies; evolutionary pro-gramming; genetic algorithms; Oxford Univer-sity Press; USA; 1996.

[29] N. Hansen; The CMA evolution strategy: a comparing review; Towards a new evolutionary computation (2006) 75–102.

[30] D.T. Gillespie; Exact stochastic simulation of coupled chemical reactions; The journal of physical chemistry 81 (1977) 2340–2361. doi: 10.1021/j100540a008.

[31] Birch; JR; A.J. Racher; Antibody production; Advanced drug delivery reviews 58 (2006) 671–685. doi: 10.1016/j.addr.2005.12.006.

[32] N. Kurano; C. Leist; F. Messi; S. Kurano; A. Fiechter; Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste prod-ucts; Journal of biotechnology 15 (1990) 113–128. doi: 10.1016/0168-1656(90)90055-G.

[33] M.S. Lao; D. Toth; Effects of ammonium and lactate on growth and metabolism of a recom-binant Chinese hamster ovary cell culture; Biotechnology progress 13 (1997) 688–691. doi: 10.1021/bp9602360.

[34] S.S. Ozturk; M.R. Riley; B.O. Palsson; Effects of ammonia and lactate on hybridoma growth; metabolism; and antibody production; Biotechnol. Bioeng. 39 (1992) 418–431. doi: 10.1002/bit.260390408

[35] Y.S. Tsao; A.G. Cardoso; R.G. Condon; M. Voloch; P. Lio; J.C. Lagos; B.G. Kearns; Z. Liu; Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism; Journal of biotechnology 118 (2005) 316–327. doi: 10.1016/j.jbiotec.2005.05.016.

[36] A. Provost; G. Bastin; S.N. Agathos; Y.J. Schneider; Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells; Bioprocess and biosystems engineering 29 (2006) 349–366. doi: 10.1007/s00449-006-0083-y.

[37] J. Link; Charakterisierung der Prozessparameter tierischer Zellkulturen in Schüttelinkuba-toren. Bachelor thesis; Bielefeld; 2010.

[38] S.S. Ozturk; B.O. Palsson; Chemical decompo-sition of glutamine in cell culture media: effect of media type; pH; and serum concentration; Biotechnology progress 6 (1990) 121–128. doi: 10.1021/bp00002a005.

[39] D.J. Wilkinson; Stochastic modelling for systems biology; Chapman & Hall/CRC; 2006.

Citeringar i Crossref