Konferensartikel

S(wi)SS: A flexible and robust sub-surface scattering shader

Apostolia Tsirikoglou
Linköping University, Sweden

Simon Ekeberg
Swiss International AB, Sweden

Johan Vikström
Swiss International AB, Sweden

Joel Kronander
Linköping University, Sweden

Jonas Unger
Linköping University, Sweden

Ladda ner artikel

Ingår i: Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden

Linköping Electronic Conference Proceedings 106:7, s. 49-58

Visa mer +

Publicerad: 2014-10-30

ISBN: 978-91-7519-212-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

S(wi)SS is a new, flexible artist friendly multi-layered sub-surface scattering shader that simulates accurately subsurface scattering for a large range of translucent materials. It is a physically motivated multi-layered approach where the sub-surface scattering effect is generated using one to three layers. It enables seamless mixing of the classical dipole, the better dipole and the quantized diffusion reflectance model in the sub-surface scattering layers, and additionally provides the scattering coming of front and back illumination, as well as all the BSDF components, in separate render channels enabling the artist to either use them physically accurately or tweak them independently during compositing to produce the desired result. To demonstrate the usefulness of our approach, we show a set of high quality rendering results from different user scenarios.

Nyckelord

Inga nyckelord är tillgängliga

Referenser

[CC05] CHENG A. H.-D., CHENG D. T.: Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements 29, 3 (2005), 268–302. 2

[d’E12] D’EON E.: A better dipole. http://www.eugenedeon.com/papers/betterdipole.pdf (2012). 1, 3, 4

[dI11] D’EON E., IRVING G.: A quantized-diffusion model for rendering translucent materials. ACM TOG 30, 4 (July 2011), 56:1–56:14. 1, 2, 3, 4, 5

[DJ05] DONNER C., JENSEN H. W.: Light diffusion in multilayered translucent materials. ACM TOG 24, 3 (July 2005), 1032–1039. 1, 2

[DJ07] DONNER C., JENSEN H. W.: Rendering translucent materials using photon diffusion. In Rendering Techniques (2007), pp. 243–251. 2

[dLE07] D’EON E., LUEBKE D., ENDERTON E.: Efficient rendering of human skin. In Proc. of Eurographics Symposium on Rendering (2007), pp. 147–157. 2

[DLR09] DONNER C., LAWRENCE J., RAMAMOORTHI R., HACHISUKA T., JENSEN H. W., NAYAR S.: An empirical bssrdf model. ACM TOG 28, 3 July 2009), 30:1–30:10. 2

[FHK13] FRISVAD J. R., HACHISUKA T., KJELDSEN T. K.: Directional dipole for subsurface scattering in translucent materials. ACM TOG (Aug. 2013). Manuscript. 2

[FPW92] FARRELL T. J., PATTERSON M. S., WILSON B.: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical Physics 19, 4 (1992), 879–888. 2

[HCJ13] HABEL R., CHRISTENSEN P. H., JAROSZ W.: Classic and modified diffusion theory for subsurface scattering. Tech. rep. (2013). Disney Research Zürich. 2

[JB02] JENSEN H. W., BUHLER J.: A rapid hierarchical rendering technique for translucent materials. In Proc. SIGGRAPH 2002 (2002), pp. 576–581. 2

[JMLH01] JENSEN H. W., MARSCHNER S. R., LEVOY M., HANRAHAN P.: A practical model for subsurface light transport. In Proc. SIGGRAPH 2001 (2001), pp. 511–518. 1, 2

[JWSG10] JIMENEZ J., WHELAN D., SUNDSTEDT V., GUTIERREZ D.: Real time realistic skin translucency. IEEE CG&A 30, 4 (2010), 32–41. 2

Citeringar i Crossref