Konferensartikel

Accelerated Computation of Minimum Enclosing Balls by GPU Parallelization and Distance Filtering

Linus Källberg
Mälardalen University, Sweden

Thomas Larsson
Mälardalen University, Sweden

Ladda ner artikel

Ingår i: Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden

Linköping Electronic Conference Proceedings 106:8, s. 57-65

Visa mer +

Publicerad: 2014-10-30

ISBN: 978-91-7519-212-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Minimum enclosing balls are used extensively to speed up multidimensional data processing in, e.g., machine learning, spatial databases, and computer graphics. We present a case study of several acceleration techniques that are applicable in enclosing ball algorithms based on repeated farthest-point queries. Parallel GPU solutions using CUDA are developed for both low- and high-dimensional cases. Furthermore, two different distance filtering heuristics are proposed aiming at reducing the cost of the farthest-point queries as much as possible by exploiting lower and upper distance bounds. Empirical tests show encouraging results. Compared to a sequential CPU version of the algorithm, the GPU parallelization runs up to 11 times faster. When applying the distance filtering techniques, further speedups are observed.

Nyckelord

Inga nyckelord är tillgängliga

Referenser

[BC03] BÂDOIU M., CLARKSON K. L.: Smaller core-sets for balls. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (2003), pp. 801–802. 1, 2

[BEKS01] BRAUNMULLER B., ESTER M., KRIEGEL H.-P., SANDER J.: Multiple similarity queries: a basic DBMS operation for mining in metric databases. IEEE Transactions on Knowledge and Data Engineering 13, 1 (Jan 2001), 79–95. 4

[BH12] BELL N., HOBEROCK J.: Thrust: A productivityoriented library for CUDA. In GPU Computing Gems Jade Edition, Hwu W.-m. W., (Ed.). Morgan Kaufmann Publishers Inc., 2012, pp. 359–371. 2

[BK73] BURKHARD W. A., KELLER R. M.: Some approaches to best-match file searching. Communications of the ACM 16, 4 (Apr. 1973), 230–236. 4

[BS98] BERMAN A., SHAPIRO L.: Selecting good keys for triangle-inequality-based pruning algorithms. In IEEE International Workshop on Content-Based Access of Image and Video Database (Jan 1998), pp. 12–19. 4

[CPZ97] CIACCIA P., PATELLA M., ZEZULA P.: M-tree: An efficient access method for similarity search in metric spaces. In Proceedings of the 23rd International Conference on Very Large Data Bases (1997), Morgan Kaufmann Publishers Inc., pp. 426–435. 9

[DDG*] DONGARRA J., DONG T., GATES M., HAIDAR A., TOMOV S., YAMAZAKI I.: MAGMA: a new generation of linear algebra library for GPU and multicore architectures. 2

[DO12] DAVIDSON A., OWENS J.: Toward techniques for autotuning GPU algorithms. In Applied Parallel and Scientific Computing, vol. 7134 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 110–119. 6

[Gär99] GÄRTNER B.: Fast and robust smallest enclosing balls. In Proceedings of the 7th Annual European Symposium on Algorithms (1999), Springer-Verlag, pp. 325–338. 2

[HS03] HJALTASON G. R., SAMET H.: Index-driven similarity search in metric spaces. ACM Transactions on Database Systems 28, 4 (Dec. 2003), 517–580. 4

[KL] KÄLLBERG L., LARSSON T.: Improved pruning of large data sets for the minimum enclosing ball problem. Graphical Models (to appear). 2, 9

[KMY03] KUMAR P., MITCHELL J. S. B., YILDIRIM E. A.: Approximate minimum enclosing balls in high dimensions using core-sets. Journal of Experimental Algorithmics 8 (2003). 1, 2

[LK13] LARSSON T., KÄLLBERG L.: Fast and robust approximation of smallest enclosing balls in arbitrary dimensions. Computer Graphics Forum 32, 5 (2013), 93–101. 1

[NN04] NIELSEN F., NOCK R.: Approximating smallest enclosing balls. In Proceedings of International Conference on Computational Science and Its Applications (ICCSA) (2004), vol. 3045 of Lecture Notes in Computer Science, Springer. 5

[PS85] PREPARATA F. P., SHAMOS M. I.: Computational Geometry: An Introduction. Springer-Verlag New York, Inc., 1985. 1

[Sør12] SØRENSEN H. H. B.: High-performance matrix-vector multiplication on the GPU. In Euro-Par 2011: Parallel Processing Workshops, vol. 7155 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 377–386. 6

[TKK07] TSANG I. W., KOCSOR A., KWOK J. T.: Simpler core vector machines with enclosing balls. In Proceedings of the 24th International Conference on Machine Learning (2007), ACM, pp. 911–918. 1

[Yil08] YILDIRIM E. A.: Two algorithms for the minimum enclosing ball problem. SIAM Journal on Optimization 19, 3 (Nov. 2008), 1368–1391. 1, 2

Citeringar i Crossref