Mads Pagh Nielsen
Department of Energy Technology, Aalborg University, Denmark
Anders Christian Christian Olesen
Department of Energy Technology, Aalborg University, Denmark
Alan Menard
Dantherm Power A/S, Hobro, Denmark
Ladda ner artikelIngår i: Proceedings of the 55th Conference on Simulation and Modelling (SIMS 55), Modelling, Simulation and Optimization, 21-22 October 2014, Aalborg, Denmark
Linköping Electronic Conference Proceedings 108:8, s. 101-110
Publicerad: 2014-12-09
ISBN: 978-91-7519-376-2
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
Proton Exchange Membrane (PEM) Fuel Cell Stacks efficiently convert the chemical energy in hydrogen to electricity through electrochemical reactions occurring on either side of a proton conducting electrolyte. This is a promising and very robust energy conversion process which can be used in many applications. For instance for automotive applications and various backup power systems substituting batteries. Humidification of the inlet air of PEM fuel cell stacks is essential to obtain optimum proton conductivity. Operational humidities of the anode and cathode streams having dew points close to the fuel cell operating temperature are required. These conditions must be met at the Beginning-Of-Life (BOL) as well as at the End-Of-Life (EOL) of the fuel cell system. This paper presents results of a numerical 1D model of the heat- and mass transport phenomena in a membrane humidifier with a Nafion-based water permeable membrane. Results are presented at nominal BOL-conditions and extreme EOL-conditions. A detailed sub-model incorporating the water absorption/desorption kinetics of Nafion and a novel and accurate representation of the diffusion coefficient of water in Nafion was implemented. The modeling explains why Nafion fails as a water permeable membrane at typical EOL-conditions.
PEM fuel cell systems; Membrane Humidifiers; Nafion water diffusion; Numerical modeling
Inga referenser tillgängliga