Vincenzo Manzoni
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
Francesco Casella
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
Download articlehttp://dx.doi.org/10.3384/ecp11063784Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany
Linköping Electronic Conference Proceedings 63:88, p. 784-790
Published: 2011-06-30
ISBN: 978-91-7393-096-3
ISSN: 1650-3686 (print), 1650-3740 (online)
Object-oriented models of complex physical systems can have a very large number of equations and variables. For some applications; only a few output variables of the model are of actual interest. This paper presents an application of the well-known Tarjan’s algorithm; that allows to automatically select the minimal set of equations and variables required to compute the time histories of selected outputs of a given model. The application of the algorithm to a simple test case is illustrated in the paper.
[1] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access computer. Algorithmica; 15(6):521–549; 1996.
doi: 10.1007/BF01940880.
[2] T.H. Cormen; C.E. Leiserson; R.L. Rivest; and C. Stein. Introduction to Algorithms; chapter 22; pages 527–529. MIT Press and McGraw-Hill; second edition; 2001.
[3] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM); 19(2):248–264; 1972.
doi: 10.1145/321694.321699.
[4] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of the ACM (JACM); 35(4):921–940; 1988.
doi: 10.1145/48014.61051.
[5] R.S. Kosaraju. Unpublished; 1978.
[6] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing; 1:146; 1972.
doi: 10.1137/0201010.